

Qualification & Reliability of Photonic Devices System Perspective

Alireza Azizi, Ph.D.

NASA-Jet Propulsion Laboratory, California Institute of Technology 818-354-0639

Alireza.Azizi@jpl.nasa.gov

NEPP Electronics Technology Workshop (ETW 2018)

June 17-20, 2019

NASA-GSFC

Introduction

- This talk concentrates on photonics devices of a system that JPL is in the process of qualifying
- Unlike electronics parts, standard guidelines for qualification and screening of photonics parts for space application does not exist
- JPL had to develop process for qualify and screening of these photonics parts
- The system is a metrology system capable of measuring displacement with nms accuracy
- This talk focuses only on the photonics part of the system

System Overview Concept

- A Laser Metrology System is a "yardstick," with "nm-marks" provided by the interference fringes of the laser beam
 - Changes in the distance *d* between the Beam Launcher (BL) and the Corner Cube (target) are measured as phase shifts between input and output beams
 - Uses heterodyne techniques to measure phase
 - "count fringes" corresponds to the changes in d
- It can be used for alignment and wavefront control of the future NASA segmented telescope such as Luvior or HabEx

3

Type of photonics devices

- Two type of photonics devices
 - Passive
 - Buy COTS and put them through environmental requirements
 - 6 thermal cycles
 - Radiation
 - Active
 - Screening and lot qualification using Telcordia and Mil-STD combine

Passive Devices (1/2)

- Waveguide
 - Custom made interferometer integrated photonics on a silicon chip
 - Perform full Qualification on 3 units
 - Performance
 - Dynamic test
 - Radiation
 - Screening other devices after qualification
 - Performance
 - Thermal cycle
 - Dynamic test

0.762 PR 14.669 ± 0.050 TM 1370 ± 0.025

Passive Devices (2/2)

- Splitters 1x2 and 2x8
 - Planar Lightwave Circuits (PLC)
 - Screening
 - Performance (PER, IL, uniformity)
 - Thermal cycle
- Fiber optics
 - Single mode (SM)
 - Polarization maintain fiber (PM)
 - Polarizing fiber (PZ)
 - There are plentiful data on most fibers
 - Perform lot qualification

Active Devices (1/2)

- Laser- 1.5 um external grating semiconductor laser with narrow linewidth
 - COTS laser, with screening and lot qualification
 - Guidelines developed at JPL for screening and qualification
 - 21 lasers were used for lot qualifications

Active Devices (2/2)

- Acousto-Optic Modulator (AOM)- provide frequency shift to the laser light
 - Custom made, with screening and lot qualification
 - Guidelines developed at JPL for screening and qualification
 - 10 AOMs were used for lot qualification

Current Qualification Process (1/2)

 JPL developed qualification process using Mil-STD and Telcordia

Qualification	Test	Method	Conditions	Quantity Acc
Step Number				(Failure No
Subgroup 1	Environmental Stress Tests			
1	Performance Tests	Per Table VII	Tests 1-12 of Table VII	13 (0)
2	Mechanical Shock	TM 2002	A, Y1 direction, 500G	
3	Performance Tests	Per Table VII	Tests 1-8 of Table VII	
4	Vibration	TM 2026	Condition A. 20G. 20 Hz to 2000 Hz	
5	Performance Tests	Per Table VII	Tests 1-8 of Table VII	
6	Thermal Shock	TM 1011	Condition A, 0°C to 100°C, 20 cycles	
7	Seal	TM 1014	Method compatible with pigtailed module	
8	Performance Tests	Per Table VII	Tests 1-8 of Table VII	
9	High-Temp Storage	3.3.2.1 and Table	+85°C, 2000 hrs	
5	riigii-Terrip Storage	4-4 in Telcordia GR-468	+65 C, 2000 IIIS	
10	Performance Tests	Per Table VII	Tests 1-8 of Table VII	
11	Low-Temperature	3.3.2.1 and Table	-40°C. 72 hours	
	Storage	4-4 in Telcordia	10 0,121104110	
		GR-468		
12	Performance Tests	Per Table VII	Tests 1-8 Table VII	
13	Temperature Cycling	GR-468, Table 4-	Condition C, 100 cycles per Table 4-4 in Telcordia GR-468, -45°C to +85°C	
14	Performance Tests	Per Table VII	Tests 1-12 of Table VII	
15	Fiber Pull	Telcordia GR- 468	1 kg	
Subgroup 2	Package Tests			
1	Solderability	TM 2003	Steam aging not required	3 (0)
2	Metal Package Isolation	RIO defined	600 VDC, 100nA maximum	
3	Lead Integrity	TM 2004 - B2	B2 lead fatigue	
4	DPA, including PIND,	MIL-STD-1580	Performed by JPL	
	RGA, Wire Bond		Permissible to use samples used for	
	Strength and Die		Solderability, Package Isolation and	
	Shear		Lead Integrity	
Subgroup 3	Accelerated Aging			
1	Accelerated Module	Table 5-1 in	-40°C to +85°C	5 (0)
	Life Test via	Telcordia	Continue Temperature Cycling tests	
	Temperature Cycling	GR-468	(Subgroup 1, step 12) using devices that	
			have completed Subgroup 1 testing to	
	D. d	D. T. L. VIII.	accumulate a total of 500 cycles.	
2	Performance Tests	Per Table VII test	Perform Tests 1-8 at the end of every	
		1-12	additional 100 cycles, and Tests 1-12 at the end of 500 cycles.	
3	Accelerated Aging	Table 5-1 in	+85°C, Continue High Temperature	5 (0)
	Tests via High	Telcordia	Storage Test (Subgroup 1, step 8) using	
	Temperature Storage	GR-468	devices that have completed Subgroup 1	
4	(Operation?)		testing to accumulate a total of 5000 hrs	
	Performance Tests	Per Table VII test	Perform Tests 1-8 at the end of every	
		1-12	1000 hrs and Tests 1-12 after the 5000hrs.	

Current Qualification Process (2/2)

- Different process used for passive devices
 - Different performance parameters and different reliability parameters

In closing

- Photonics market is a growing market, in some estimate it is expected to be over \$900 billions by 2024.
- Space application is a portion of this growth with its unique need and requirement.
- More photonics parts are being used or considered for space application due to its benefit, small mass, small size and low power
- Need to develop guidelines and methodology on how to qualify photonics devices for space application
- Need to have a good understand of failure modes of photonics devices
- Goddard has done some great work in this area, and ESA has been also working on this area as well.

NEPP ETW- 2019

11

- General strategy- Test according to Mil-STD and Telcordia
- Standard tests are generally not suited for the photonics devices
- Some considerations and constrains
- Cost reduction
 - Smaller number of devices per test groups
 - Reduction in the characterization parameters at each steps
- Small procurement volume
 - Not very attractive for COTS manufacturers
- Reliability and failure data
 - Development of photonic devices are moving fast and not enough time to have complete reliability and failure data for FM
- Space environments, vacuum, hermeticity, radiation, temperature range

Recommendations

- Establish a collaboration with other NASA centers, universities, industries and other institutions
- Prioritize parts that are being considered for near term missions
- Develop methodology for evaluation and space qualification of the photonics devices
- Develop guideline on how to bring photonic devices from TRL1 to TRL6

13

Thank You

NEPP ETW- 2019 14